skip to main content


Search for: All records

Creators/Authors contains: "Kanchanavatee, Noravee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrical resistivity measurements were performed on single crystals of URu2–xOsxSi2up tox= 0.28 under hydrostatic pressure up toP= 2 GPa. As the Os concentration,x, is increased, 1) the lattice expands, creating an effective negative chemical pressurePch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressurePcis required to induce the HO→LMAFM phase transition. We compare the behavior of theT(x,P) phase boundary reported here for the URu2-xOsxSi2system with previous reports of enhanced HO in URu2Si2upon tuning withPor similarly in URu2–xFexSi2upon tuning with positivePch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2. We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metald-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2. Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and thed-electron states of Ru and its isoelectronic Fe and Os substituents in URu2Si2.

     
    more » « less
  2. null (Ed.)
    In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound U R u 2 S i 2 (URS) into the so-called hidden-order (HO) phase when the temperature drops below T 0 = 17.5 K. Here, we show that the interaction between the heavy fermion and the conduction band states near the Fermi level has a key role in the emergence of the HO phase. Using angle-resolved photoemission spectroscopy, we find that while the Fermi surfaces of the HO and of a neighboring antiferromagnetic (AFM) phase of well-defined order parameter have the same topography, they differ in the size of some, but not all, of their electron pockets. Such a nonrigid change of the electronic structure indicates that a change in the interaction strength between states near the Fermi level is a crucial ingredient for the HO to AFM phase transition. 
    more » « less